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Analytic Traveling-Wave Solutions of the
Kardar-Parisi-Zhang Interface Growing
Equation with Different Kind of Noise
Terms

I. F. Barna, G. Bognár, L. Mátyás, M. Guedda, and K. Hriczó

Abstract The one-dimensional Kardar-Parisi-Zhang dynamic interface growth
equation with the traveling-wave Ansatz is analyzed. As a new feature additional
analytic terms are added. From the mathematical point of view, these can be con-
sidered as various noise distribution functions. Six different cases were investigated
among others Gaussian, Lorentzian, white or even pink noise. Analytic solutions
are evaluated and analyzed for all cases. All results are expressible with various
special functions Mathieu, Bessel, Airy or Whittaker functions showing a very rich
mathematical structure with some common general characteristics. This study is the
continuation of our former work, where the same physical phenomena was investi-
gatedwith the self-similar Ansatz. The differences and similarities among the various
solutions are enlightened.
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1 Introduction

Solidification fronts or crystal growth is a scientific topic which attracts much inter-
est from a long time. Basic physics of growing crystallines can be found in large
number of textbooks (see e.g., [1]). One of the simplest nonlinear generalization of
the ubiquitous diffusion equation is the so called Kardar-Parisi-Zhang (KPZ) model
obtained from Langevin equation

∂u

∂t
= ν∇2u + λ

2
(∇u)2 + η(x, t), (1)

where u stands for the profile of the local growth [2]. The first term on the right
hand side describes relaxation of the interface by a surface tension preferring a
smooth surface. The next term is the lowest-order nonlinear term that can appear
in the surface growth equation justified with the Eden model. The origin of this
term lies in non-equilibrium. The third term is a Langevin noise which mimics the
stochastic nature of any growth process and usually has a Gaussian distribution. In
the last two decades numerous studies came to light about the KPZ equation.Without
completeness we mention some of them. The basic physical background of surface
growth can be found in the book of Barabási and Stanley [3]. Later, Hwa and Frey
[4, 5] investigated the KPZ model with the help of the renormalization group-theory
and the self-coupling method which is a precise and sophisticated method using
Green’s functions. Various dynamical scaling forms of C(x, t) = x−2ϕC(bx, bzt)
were considered for the correlation function (whereϕ, b and z are real constants). The
field theoretical approach by Lässig was to derive and investigate the KPZ equation
[6]. Kriecherbauer and Krug wrote a review paper [7], where the KPZ equation was
derived from hydrodynamical equations using a general current density relation.

Several models exist and all lead to similar equations as the KPZ model, one of
them is the interface growth of bacterial colonies [8]. Additional general interface
growing models were developed based on the so-called Kuramoto-Sivashinsky (KS)
equation which shows similarity to the KPZ model with an extra ∇4u term [9].

Kersner and Vicsek investigated the traveling wave dynamics of the singular
interface equation [10] which is closely related to the KPZ equation. One may find
certain kind of analytic solutions to the problem [11] as already mentioned in [12].

Ódor and co-worker intensively examined the two dimensionalKPZ equationwith
dynamical simulations to investigate the aging properties of polymers or glasses [13].

Beyond these continuous models based on partial differential equations (PDEs),
there are large number of purely numerical methods available to study diverse surface
growth effects. As a view we mention the kinetic Monte Carlo [14] model, Lattice-
Boltzmann simulations [15], and the etching model [16].

In this paper we investigate the solutions to the KPZ equation with the traveling
wave Ansatz in one-dimension applying various forms of the noise term. The effects
of the parameters involved in the problem are examined.
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2 Theory

In general, non-linear PDEs has no general mathematical theory which could help us
to understand general features or to derive physically relevant solutions. Basically,
there are two different trial functions (or Ansatz) which have well-founded physical
interpretation. The first one is the traveling wave solution, which mimics the wave
property of the investigated phenomena described by the non-linear PDE of the form

u(x, t) = f (x ± ct) = f (ω), (2)

where c means the velocity of the corresponding wave. Gliding and Kersner used
the traveling wave Ansatz to investigate study numerous reaction-diffusion equation
systems [17]. To describe pattern formation phenomena [18] the traveling waves
Ansatz is a useful tool as well. Saarloos investigated the front propagation into
unstable states [19], where traveling waves play a key role.

This simple trial function can be generalized in numerousways, e.g., to e−αt f (x ±
ct) := e−αt f (ω) which describes exponential decay or to g(t) · f (x ± c · t) :=
g(t) f (ω) which can even be a power law function of the time as well. We note,
that the application of these Ansatz to the KPZ equation leads to the triviality of
e−αt = g(t) ≡ 1. In 2006, He and Wu developed the so-called exp-function method
[20] which relying on an Ansatz (a rational combination of exponential functions),
involving many unknown parameters to be specified at the stage of solving the prob-
lem. The method soon drew the attention of many researchers, who described it
as “straightforward”, “reliable”, and “effective”. Later, Aslan and Marinakis [21]
summarized various applications of the Ansatz.

There is another existing remarkable Ansatz interpolating the traveling-wave and
the self-similar Ansatz by Benhamidouche [22].

The second one is the self-similar Ansatz [23] of the form u(x, t) = t−α f
(
x
tβ

) :=
t−α f (ω). The associated mathematical and physical properties were exhaustively
discussed in our former publications [24, 25] or in a book chapter [26] in the field of
hydrodynamics. All these kind of methods belong to the so-called reduction mecha-
nism, where applying a suitable variable transformation the original PDEs or systems
of PDEs are reduced to an ordinary differential equation (ODE) or systems of ODEs.

3 Results Without the Noise Term

Applying the traveling wave Ansatz to the KPZ PDE with η(x, t) = 0, Eq. (1) leads
to the ODE of

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
= 0, (3)
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From now on we use the Maple 12 mathematical program package to obtain analytic
solutions in closed forms. For Eq. (3), it can be given as

f (ω) = 2

λ
ln

⎛

⎝
λ

[
c1νe

cη
ν + c2c

]

2νc

⎞

⎠ ν, (4)

where c1 and c2 are the constants of integration and c is the speed of the wave.
We fix this notation from now on throughout the paper. Note, that this is an equa-

tion of a linear function f (ω) = aω + b (just given in a complicated form) with any
kind of parameter set, except c1 = 0 which gives a constant solution. This physically
means that there is a continuous surface growing till infinity which is quite unphysi-
cal. Therefore, some additional noise is needed to have surface growing phenomena.
We remark the general properties of all the forthcoming solutions. Due to the Hopf-
Cole transformation [27, 28] (h = A ln(y)) convertes the non-linear KPZ equation
to the regular heat conduction (or diffusion) equation with an additional stochastic
source term eliminating the non-linear gradient-squared term. All the solutions con-
tain a logarithmic function with a complicated argument. In this sense, the solutions
have the same structure, the only basic difference is the kind of special function
in the argument. If these argument functions take periodically positive and nega-
tive real values then the logarithmic function creates distinct intervals (small islands
which describe the surface growing mechanisms, and define the final solution). This
statement is generally true for our former study as well [29, 30].

Remark that the solution to (1) obtained from the self-similar Ansatz reads

f (ω) = 2ν

λ
ln

(
λc1

√
πν er f [ω/(2

√
ν)] + c2

2ν

)
, (5)

where er f [ ] means the error function [31]. Figure1 compares these two solutions.
We note the asymptotic convergence of the self-similar solution and the divergence of
the traveling-wave solution.We have the same conclusion as in our former study [29]
(where the self-similar Ansatz was applied), that without any noise term the KPZ
equation cannot be applied to describe surface growth phenomena. The different
kind of noise terms define different kind of extra islands (parts of the solution having
compact supports) and these islands show a growth dynamics.

To have a better understanding between the two solutions, Fig. 2 shows the pro-
jection of both complete solutions u(x, y = 0, t). The major differences are still
present.
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Fig. 1 The two shape
functions of the KPZ
equation without any kind of
noise term. The solid line
represents the solution for
traveling-wave and the
dashed line is for the
self-similar Ansatz. The
applied parameter set is c1 =
c2 = c = 1, ν = 4, λ = 3

Fig. 2 The two solutions of
the KPZ equation without
any noise term. The upper
lying function represents the
traveling-wave solution. The
applied parameter set is the
same as used above

4 Results with Various Noise Terms

As we mentioned in our former study [29] only the additional noise term makes the
KPZ solutions interesting. We search the solutions with the traveling-wave Ansatz,
therefore is it necessary that the noise term η should be an analytic function of
ω = x + ct like η(ω) = a(x + ct)2. We will see that for some kind of noise terms it
is not possible to find a closed analytic solution when all the physical parameters are
free (ν, λ, c, a), however, if some parameters are fixed it becomes possible to find
analytic expressions. It is also clear, that it is impossible to perform a mathematically
rigorous complete function analysis according to all four physical and two integral
parameters c1, c2. We performed numerous parameter studies and gave the most
relevant parameter dependencies of the solutions.
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Fig. 3 Three different shape
functions for the brown noise
n = −2. The applied
physical parameter set is
λ = 5, ν = 3, a = 2 and
c = 2. The dashed line is for
c1 = 1, c2 = 0, the dotted
line is for c1 = c2 = 1 and
the solid line is for
c1 = 0, c2 = 1, respectively

4.1 Brown Noise n = −2

As first, case let us consider the brown noise η(x, t) = a
ω2 . It leads to the following

ODE

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
− a

ω2
= 0. (6)

The solution can be given in the form

f (ω) = 1

λ

(

cη + ν ln

{
λ2

[−c1 Id
(
cω
2ν

) + c2Kd
(
cω
2ν

)]2

c2ω
[
Kd

(
cω
2ν

)
Id+1

(
cω
2ν

) + Id
(
cω
2ν

)
Kd+1

(
cω
2ν

)]2

})

(7)

where Id(ω) and Kd(ω) are the modified Bessel functions of the first and second
kind [31] with the subscript of d =

√
ν2−2aλ
2ν + 1. To obtain real solutions for the KPZ

equation (which provides the height of the surface) the order of the Bessel function
(notated as the subscript) has to be non-negative and provides the following constrain
ν2 ≥ 2aλ. This gives us a reasonable relation among the three terms of the right hand
side of Eq. (1). When the magnitude of the noise term a becomes large enough no
surface growth take place. Figure3 presents solutions with different combinations of
the integration constants c1, c2. Having in mind, that the Kd() Bessel function of the
second kind is regular at infinity, one gets that it has a strong decay at large argument
ω. The c1 = 0, c2 = 0 type solutions have physical relevance. Figure4 shows the
complete solution of the KPZ equation. It can be seen that a sharp and localized peak
exists for a short time. Therefore, no typical surface growth phenomena is described
with this kind of noise and initial conditions.
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Fig. 4 The solution u(x, t)
to the KPZ equation for the
brown noise n = −2 with
the parameter set of c1 =
c2 = c = 1, ν = 4, λ = 3

4.2 Pink Noise n = −1

The noise term η = a
ω
corresponds to the ODE

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
− a

ω
= 0, (8)

whose general solution is

f (ω) = 1

λ
+ ln

{ −cλ[c1M(εb) − c2U (εb)]
M(εd)(2νcU (εb) + aλU (εb)) + 2M(εb)νcU (εd)

}
, (9)

where M(εb) and U (εd) are the Kummer M and Kummer U functions (for more
see [31]) with the parameters of εb = ( 2cν−aλ

2cν , 2, cω
ν

) and εd = (−aλ
2cν , 2, cω

ν
). Figure5

shows three different shape functions corresponding to the pink noise. The evaluation
of direct parameter dependencies of the solutions are not trivial. In some reasonable
parameter range we found the following trends: for fixed a, c, ν and larger λ values,
the solution shows more independent well-defined “bumps” or islands and higher
steepness of the line which connects the maxima of the existing peaks of the islands.
At fixed parameter values a, c, λ, different values of ν just shift the position of the
existing peaks. The role of a and c is not defined. Figure6 presents a total solution
u(x, t) to the KPZ equation, the freely traveling three islands are clearly seen.

4.3 White Noise n = 0

Here, the noise term is η = aω0 = a which leads to the ODE of
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Fig. 5 Three different shape
functions for the pink noise
(n = −1). Solid, dashed and
dotted lines are for the
parameter sets of
(c1 = c2 = 1; c = 1/2, ν =
0.85, λ = 3, a = 2),
(c1 = c2 = 1; c = 1/2, ν =
0.85, λ = 2.5, a = 2),
(c1 = c2 = 1; c = 0.6, ν =
0.85, λ = 5, a = 2),
respectively

Fig. 6 The total solution of
the KPZ equation for
n = −1 with the applied
parameter set c1 = c2 =
1, c = 1/2, ν = 0.85λ = 3
and a = 2

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
− a = 0, (10)

f (ω) = ωc

λ
− ω

√
c2 − 2aλ

λ
− 2ν ln(2)

λ
−

ν ln

⎛

⎜
⎝ c2−2aλ

λ2

[

c1e
ω

√
c2−2aλ
ν −c2

]2

⎞

⎟
⎠

λ
(11)

Figure7 shows two shape functions for two different parameter sets. There exists
basically two different functions depending on the ratios of the integral constants c1
and c2. The first is a pure linear function with infinite range and its domain represents
boundless surface growth, which is a physical nonsense. The second solution is a
sum of a linear and logarithmic function with a domain bounded from above due to
the argument of the ln function. Figure8 shows the final solution of the KPZ equation
u(x, t). We note that with the substitution ω = x + ct only the first kind of solution
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Fig. 7 Two shape functions
for the constant or white
noise. The solid line is for
the parameter set
c1 = 4, c2 = −1, c =
0.3, ν = 2, λ = 1, a = 1,
and the dashed line is for
c1 = c2 = 1, c = 4, ν =
0.5, λ = 1, a = 0.3,
respectively

Fig. 8 The KPZ solution for
the constant or white noise.
The applied parameter set is
c1 = c2 = 1, c = 4, ν =
0.5, λ = 1, a = 0.3,
respectively

remains real. For the second parameter set which creates a modified ln function with
a cut at well-defined argument becomes complex.

4.4 Blue Noise n = 1

The last color noise η = aω leads to the ODE of

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
− aω = 0, (12)

with the general solution of

f (ω) = cω

λ
− 4ν ln(2)

3λ
+ 2ν

3λ
ln

{
λ2[c1Ai(ω̃) − c2Bi(ω̃)]3

νa[Ai(1, ω̃)Bi(1, ω̃) − Bi(1, ω̃)Ai(ω̃))]3
}

(13)



248 I. F. Barna et al.

Fig. 9 The shape function
for the blue noise for three
parameter sets. The solid,
dashed and dotted lines are
for the parameter sets
(c1 = 1, c2 = 0, c = 3, a =
0.5, ν = 1.5, λ = 2),
(c1 = c2 = c = 1, a =
1, ν = 1, λ = 3), and
(c1 = c2 = c = 1, a =
1, ν = 1, λ = 3),
respectively

Fig. 10 The solution u(x, t)
for the n = 1 or blue noise
with the applied parameter
set of c1 = c2 = c = 1, ν =
2, λ = 3, a = 1

where Ai(ω̃), Biω̃) denote the Airy functions of the first and second kind and
Ai(1, ω̃) and Bi(1, ω̃) are the first derivatives of the Airy functions, where we used

the following notation: ω̃ = −(2aωλ−c2)4
1
3
(

aλ

ν2

)1/3

4aλ
. Exhaustive details of the Airy func-

tion can be found in [32].When the argumentω is positive, Ai(ω) is positive, convex,
and decreasing exponentially to zero, while Bi(ω) is positive, convex, and increas-
ing exponentially. When ω is negative, Aiω) and Biω) oscillate around zero with
ever-increasing frequency and ever-decreasing amplitude.

Figure9 represents shape functions with different parameter sets. Our analysis
showed that the composite argument of the ln function is purely real having a decay-
ing oscillatory behavior with alternatively positive and negative values. The ln func-
tion creates infinite number of separate “bumps” or islands with compact supports
and infinite first spatial derivatives at their boarders. Combining the first two terms
of the (13), we get an infinite series of separate islands with increasing height. The
ratio c/λ is the steepness of the line, this automatically defines the steepness of the
absolute height of the islands. The effects of the various parameters are not quite
independent and hard to define, we may say that in general each parameter ν, λ, a, c
alone can change the widths, spacing and absolute height of the peaks. Figure10
shows the total solution of the KPZ equation. The traveling “bumps” are clearly
visible.
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4.5 Lorentzian Noise

As a first non-colour noise let us consider the Lorentzian noise of the form η = a
1+ω2 .

It leads to the ODE of

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
− a

1 + ω2
= 0, (14)

We mention, that for the classical exponential and Gaussian noise distributions
we could not give solutions in closed analytic form. Unfortunately, there is no closed
analytic expression available if all the parameters (ν, λ, c, a) are free. The formal
solution contains integrals of the Heun C confluent functions multiplied by some
polynomials. However, if the parameters a, λ, ν are fixed, there is analytic solution
available for free propagation speed c. The exact solution for a = λ = ν = 1/2, and
c = 2 is the following

f (ω) = cω +
2 ln

{
c1C(B) − c2ωC(A)

2(ω4 + ω2)[C(A)C ′(B) − C(B)C ′(A)] + (1 + ω2)C(A)C(B)

}
, (15)

where C ′() means the first derivative of the Heun C function [33]. For the better
transparency we introduce the following notations A = 0, 1

2 , 1,
c2

4 , 1 − c2

4 ;−ω2 and

B = 0,− 1
2 , 1,

c2

4 , 1 − c2

4 ;−ω2.
Figure11 shows the shape function for given parameter set. There is a broad

island close to the origin and numerous tiny ones at larger arguments. The numerical
accuracy of Maple 12 was enhanced to reach this resolution. It is well-known that
the Heun functions are the most complicated objects among special functions and
the evaluations needs more computer time.

Figure12 presents the total solution of the original KPZ. Due to the substitution
ω = x + ct the original local solution broke down to several smaller islands which
freely propagate in time and space.

4.6 Periodic Noise

The last perturbation investigated is a periodic function η = a sin(ω) and

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
− a sin(ω) = 0. (16)
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Fig. 11 The shape function
for the Lorentzian noise. The
applied parameters are
c1 = 0.5, c2 = 2, c = 1, ν =
1, a = 1, λ = 3

Fig. 12 The solution of the
KPZ equation for Lorentzian
noise, with the parameters
mentioned above

The general solution can be given as

f (ω) = 1

λ

(
cω + 2 ln

{
λ[c1C(εa) − c2S(εa)]

ν[−C ′(εa)S(εa) + C(εa)S′(εa)]
})

, (17)

where C(εa), S(εa),C ′(εa) and S′(εa) are the Mathieu S and Mathieu C functions
and the first derivatives. For basic properties we refer to [31]. For a complex study
about Mathieu functions see [34–36]. In (17), we used the abbreviation of εa =
− c2

ν2 ,− aλ
ν2 ,−π

4 + ω
2 .

Figure13 shows a typical shape function for the periodic noise term. Due to the
elaborate properties of even the single Mathieu C or S functions for some parameter
pairs a, q the function is finite with periodic oscillations and for some neighboring
parameters it is divergent for large arguments. No general parameter dependence can
be stated. The parameter space of the set of six real values (c1, c2, c, a, ν, λ) is too
large to map. After the evaluation of numerous shape functions we may state, that
a typical shape function is presented with two larger islands close to the origin and
numerous smaller intervals. For large argument ω the shape function shows a steep
decay.
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Fig. 13 The shape function
for the periodic noise. The
applied parameters are
c1 = 0.5, c2 = 2, c = 1, ν =
1, a = 1, λ = 3

Fig. 14 The complete
traveling wave solution
u(x, t) for periodic noise
with the same parameter set
as given above

Figure14 shows the complete solution. Note, that the first two broader islands
can be seen as they freely travel. Due to the finite resolution the smaller islands are
represented as irregular noise in the background.

5 Conclusions

In summary, we can say that with an appropriate change of variables applying the
traveling-wave Ansatz onemay obtain analytic solution for the KPZ equation for one
spatial dimension with numerous noise terms. We investigated four type of power-
law noise ωn with exponents of −2,−1, 0, 1, called the brown, pink, white and blue
noise, respectively. Each integer exponent describes completely different dynamics.
Additionally, the properties of Gaussian and Lorentzian noises are investigated. Pro-
viding completely dissimilar surfaces with growth dynamics. All solutions can be
describedwith non-trivial combinations of various special functions, like error,Whit-
taker,Kummer orHeun. The parameter dependencies of the solutions are investigated
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and discussed. Future works are planned for the investigations of two dimensional
surfaces.
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